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Abstract

We have modelled the total atmospheric OH-reactivity in a boreal forest and in-
vestigated the individual contributions from gas phase inorganic species, isoprene,
monoterpenes, and methane along with other important VOCs. Daily and seasonal
variation in OH-reactivity for the year 2008 was examined as well as the vertical OH-5

reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport
model (Boy et al., 2011) together with measurements from Hyytiälä, SMEAR II sta-
tion, Southern Finland, conducted in August 2008. Model simulations only account for
∼30–50% of the total measured OH sink, and in our opinion, the reason for missing
OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge10

of atmospheric chemistry including uncertainties in rate constants. Furthermore, we
found that the OH-reactivity correlates with both organic and inorganic compounds and
increases during summer. The summertime canopy level OH-reactivity peaks during
night and the vertical OH-reactivity decreases with height.

1 Introduction15

The hydroxyl radical (OH) is the most important oxidant in the atmosphere. Under-
standing both the sources and sinks of OH is key to assessing the atmosphere’s
capacity to oxidise gas phase organic trace gases and produce secondary organic
aerosols (SOA). While the production term during daytime for OH is reasonably well
constrained by radiometer measurements (JO1D), the sink term (total OH-reactivity)20

was until recently only indirectly determined by summing the contributions of available
measurements.

The application of Laser Induced Fluoresence (LiF) has allowed total OH lifetime
and hence total OH-reactivity (OH-reactivity=1/OH lifetime) to be determined directly
in campaigns such as PROPHET 2000 (di Carlo et al., 2004), INTEX-B (Mao et al.,25

2009), PMTACS-NY2001 (Ren et al., 2003) and PRD (Lou et al., 2010). Measuring the
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total OH-reactivity using LiF is difficult since it requires the rapid measurement of OH
at very low concentrations and requires complicated corrections due to atmospheric
NO to be taken into account. In this study, we use a dataset acquired using an alter-
native method namely the comparative reactivity approach (Sinha et al., 2008). This
technique circumvents the difficult task of measuring OH radicals directly and instead5

relies on the accurate measurement of pyrrole at high mixing ratios (>15 ppbV) using a
Proton Transfer Reaction – Mass Spectrometer (PTR-MS) (Sinha et al., 2010). Since
measurement techniques provide data at a specific point for a limited period, modelling
is needed in order to develop an overall spatial and temporal understanding of the total
reactivity term and test the accuracy of chemical parametrizations by comparison with10

measurements.
OH-reactivity has previously been calculated in models, albeit with limited chemistry;

(e.g. Apel et al., 2010) (including 85 chemical species, and 196 reactions), and from
field measurements by adding the OH-reactivity of the individually measured OH sinks
(e.g. NMHCs, CO, CH4, NOX) (Chatani et al., 2009; Lou et al., 2010; Sinha et al., 2010;15

di Carlo et al., 2004).
In this paper, we present simulated OH-reactivities for one year in a boreal forest.

The work focuses on the OH-reactivity partly in order to investigate how well we under-
stand the boundary layer OH chemistry and partly in order to gain a better understand-
ing of the aerosol-precursors formed due to the reaction of volatile organic compounds20

(VOCs) and OH. We have used data from the SMEAR II station, Hyytiälä, Southern
Finland. We simulated over boreal forest, since these cover a significant part of the
Earths surface and emit large amounts of volatile organic compounds. In order to as-
certain how well we understand the OH initiated photochemical processes, we have
compared our calculated OH-reactivity with measured ambient OH-reactivity from the25

BFORM (Boreal Forest OH Reactivity Measurements) campaign, August 2008 (Sinha
et al., 2010) during which the total atmospheric OH-reactivity was measured using
the Comparative Reactivity Method (Sinha et al., 2008). However, the measured OH-
reactivity data will not be analysed in details here, but can be found in the paper by
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Sinha et al. (2010). We also present the modelled contributions to the OH-reactivity by
several different types of trace gases, discuss the seasonal variation and present the
vertical OH-reactivity profile.

2 Model simulations

The one-dimensional chemistry-transport model SOSA (Model to Simulate the con-5

centrations of Organic vapours and Sulphuric Acid) was used in the calculations of the
OH-reactivity (Boy et al., 2011). This vertical transport model is based on the cou-
pled plant-atmosphere boundary-layer model SCADIS (Sogachev et al., 2002, 2005;
Sogachev and Panferov, 2006; Sogachev, 2009). Measured data from the Station to
Measure Ecosystem-Atmosphere Relation (SMEAR II) at Hyytiälä, Southern Finland is10

used as input. A detailed description of the station and instrumentation can be found
under Kulmala et al. (2001) and under http://www.atm.helsinki.fi/SMEAR/index.php,
and a description of measurements used in SOSA can be found under Boy et al. (2011).

2.1 Meteorology and transport

The meteorology is described by a one-dimensional version of the SCADIS model (So-15

gachev et al., 2002; Sogachev and Panferov, 2006; Boy et al., 2011). Based on the
Reynolds averaged Navier-Stokes (RANS) equations, SCADIS employs a turbulent ki-
netic energy – specific dissipation closure scheme. The model includes prognostic
equations for these variables and for wind, heat and moisture. Involving a number of
parametrizations the model is capable of describing in a realistic manner the physical20

processes forming the meteorological regime within and above the forest canopy under
different environmental conditions. Further, measured meteorological data (tempera-
ture, humidity and wind speed, at 4, 8, 16, 33, 50 and 67 m heights) from SMEAR
II mast are used for nudging the model variables towards the observations. SCADIS
describes the atmospheric boundary layer evolution and the mixing of the chemical25
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species in a model domain of 51 layers. The resolution is higher near the ground, and
the separation between layers increases progressively towards the model top, which is
at 3000 m.

2.2 Emission

The emissions of organic vapours from the canopy were calculated with a modification5

of the model MEGAN (Model of Emissions of Gases and Aerosols from Nature), ver-
sion 2.04 (Guenther et al., 2006). This model, which has been implemented in SOSA,
estimates landscape average emission factors for a specific location by combining es-
timates of plant species composition and representative species-specific emission fac-
tors. For each time step, emissions driven by changes in calculated leaf temperature10

and incident solar radiation on sun and shade leaves at different canopy levels, are
calculated. We have assumed the landscape to be composed of Scots pine and use
standard emission potentials by Hakola et al. (2006). This is a good first order ap-
proximation even though it neglects the influence of other species in the concentration
footprint (e.g. Haapanala et al., 2007). Also 16 different canopy characteristics, such15

as leaf data together with scattering and reflection coefficients are used to describe the
needle forest. The emission scheme has been verified by comparing VOC gas con-
centrations in the paper by Boy et al. (2011), but also in this publication (Sect. 4.3) we
show good agreement between measured and modelled monoterpene concentrations.

2.3 Chemistry20

The chemistry is calculated using the Kinetic PreProcessor (KPP) (Damian et al.,
2002). Most chemical reaction equations were selected from the Master Chemical
Mechanism http://mcm.leeds.ac.uk/MCM/. The chemistry includes 2140 reactions,
and a total of 761 chemical species representing the complete reaction paths for iso-
prene, 2-methyl-3-buten-2-ol, α-pinene, β-pinene, methanol, acetone, acetaldehyde,25

formaldehyde, methane and relevant inorganic reactions. The photochemistry has

9137

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/9133/2011/acpd-11-9133-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/9133/2011/acpd-11-9133-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://mcm.leeds.ac.uk/MCM/


ACPD
11, 9133–9163, 2011

Modelling atmos.
OH-reactivity in

boreal forest
ecosystem

D. Mogensen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

been improved by calculating the photo dissociation constants more precisely us-
ing data from Atkinson et al. (1992) and spectral irradiance measurements from the
SMEAR II station (Boy et al., 2002). In some cases we also used more recently ob-
tained rate constants, e.g. for the reaction between acetone and OH. Measured gas
concentrations from SMEAR II are used as input. Furthermore, condensation sinks for5

sulphuric acid and nitric acid, based on DMPS (Differential Mobility Particle Sizer) and
APS (Aerodynamic Particle Sizer) data, are included (Boy et al., 2003).

OH-reactivity related to a single reaction is calculated by multiplying the reaction
rate coefficient by the concentration of the other reactant. The total OH-reactivity is
calculated as the sum of these, over the set of reactions with OH as the other reactant:10

ROH =
∑

Reactions

kOH+X× [X ] (R1)

where ROH is the OH-reactivity, and kOH+X is the bimolecular rate constant for the
chemical reaction between the OH radical and the chemical species X , where the
concentration of X is given by [X ]. We then sum over all the OH sink reactions.15

The reaction equation files, from the Master Chemical Mechanism, are text files in
KPP-format. We wrote a script in the Python programming language (using the pattern
matching operations in the regular expressions module) to find the bimolecular reac-
tions including OH, and to postprocess them into additional “bookkeeping reactions”, to
calculate the time evolution of the OH-reactivity along with the time evolution of the real20

chemicals. In the results, we use 30 min averages of OH-reactivity. (Sensitivity studies
with averaging over different time slots showed no significant difference in results.)

3 Measurements

A list of measurements conducted during the OH-reactivity measured period can be
found under Sinha et al. (2010) and further details about these can be found under25

Hari and Kulmala (2005).
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3.1 OH-reactivity measurements

OH-reactivity was measured in August 2008 during the Boreal Forest OH-Reactivity
Measurement (BFORM) campaign using the comparative reactivity instrument de-
scribed in detail by Sinha et al. (2008). Briefly, the measurement is an in situ compet-
itive kinetics experiment in which a proton transfer reaction mass spectrometer (PTR-5

MS) is coupled to a turbulent flow glass reactor. Pyrrole (C4H5N) is introduced into the
reactor and its concentration (say C1) is monitored with a PTR-MS, in the air exiting
the reactor. Then, synthetically generated OH radicals ([OH]< [pyrrole]) are introduced
into the reactor at a constant rate to react with pyrrole. This causes the initial con-
centration of pyrrole to decrease to concentration C2. When ambient air is introduced10

into the reactor, the various species present in it compete with pyrrole for the OH, so
that the concentration of pyrrole increases to C3. Comparing the amount of pyrrole
exiting the reactor in the zero air (C2) and ambient air (C3), allows the introduced air
samples OH-reactivity to be determined, provided the system is suitably calibrated for
pyrrole (Sinha et al., 2009). The detection limit for the OH-reactivity measurements was15

3.5s−1, while the overall uncertainty of the measured OH reactivity is ∼ 20%. Further
details regarding technical aspects and sampling can be found in Sinha et al. (2010).

3.2 VOC measurements

VOC measurements were conducted using the PTR-MS that operates permanently at
the SMEAR II station (Taipale et al., 2008). Ambient air was sampled from a scaffold-20

ing tower located approximately 20 m from the OH-reactivity sampling. Samples were
taken from three heights: 4, 14, and 22 m. The PTR-MS measured masses 33, 59,
45, 47, 61, 69, 71, 73, 87, 93, 101, 137 and 81, and 169 which have been attributed
to methanol, sum of acetone and propanal, acetaldehyde, formic acid, acetic acid,
isoprene, sum of methacrolein and methyl vinyl ketone, methyl ethyl ketone, methyl25

butenol, toluene, sum of cis-3 hexenol and hexanal, sum of monoterpenes, and pinon-
aldehyde, respectively. These identifications are in keeping with previous PTR-MS
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studies although minor contributions from other species cannot be ruled out (Taipale
et al., 2008; de Gouw and Warneke, 2007). The overall uncertainty of the VOC mea-
surements was estimated to be 15% (Taipale et al., 2008). Ambient air measurements
were available daily for the following hours: 1–2, 4–5, 7–8, 10–11, 13–14, 16–17, 19–
20, 22–23, as chamber and flux measurements were conducted during the other time5

spans.

4 Results and discussion

The OH-reactivity was measured from the 12 August evening until the morning of the
28 August 2008. Due to a pollution event on the 27th, we only compare our modelled
data with measured data in the period 13th at 00:00 o’clock to the 26th at 24:00 o’clock.10

We refer to this period as “Period A”. Due to a generally higher measured OH-reactivity
in the first part of Period A, we further separate this into two sub-periods: “Period B”
starting from the 13th at 00:00 o’clock to the 18th at 24:00 o’clock, and “Period C” start-
ing from the 19th at 00:00 o’clock to the 26th at 24:00 o’clock. We will analyse these
subperiods separately and compare them to the full period (Period A). The canopy15

height in Hyytiälä is set to 15 m in our model. The OH-reactivity was measured at a
height of approximately 12–14 m and modelled at the height of 14 m if not mentioned
otherwise.

In Fig. 1, 30 min resolution measured and modelled OH-reactivity in August 2008 is
presented. The average modelled OH-reactivity in Period A is calculated to be 2.5s−1

20

with the lowest value of 1.7s−1 and the highest value of 4.4s−1 showing little variability
in contrast to the measured data where great fluctuation is observed over short time
scales. This high measured fluctuations could be due to locally strong turbulence and
time-depending emission peaks which are not included in our model, that assumes a
more homogeneous forest. However, we do not observe any large fluctuation in total25

sum of measured monoterpenes.
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Modelled, measured and missing OH-reactivity for the three periods are listed in Ta-
ble 1. The average modelled OH-reactivity in Period B is 2.3s−1 and in Period C 2.6s−1

leading to a missing OH-reactivity of 6.2s−1 (∼70%) and 2.5s−1 (∼50%), respectively.
On average we underestimate the total OH-reactivity by ∼ 60%, but for extensive pe-
riods the modelled reactivity is within the uncertainty of the measurement value. In5

some periods the model overestimates the measurements.
The large values of missing OH-reactivity over the two weeks arise from a more or

less constant modelled OH-reactivity within the whole Period A, but a much higher mea-
sured OH-reactivity in the first week (8.6s−1) than in the last week (5.1s−1). Analysing
the measured and modelled gas concentrations, it was found that the concentrations of10

those species contributing significantly to the OH-reactivity, were constant during the
entire selected Period A, or slightly lower during Period B than Period C. This automat-
ically results in higher modelled OH-reactivity in Period C. The temperature difference
between the two periods was small; on average it was 1.3 K colder during the last
week. As previous hydrocarbon flux measurements shows, emissions decrease with15

temperature, which will decrease the OH-reactivity (Rinne et al., 2007). The emission
flux of monoterpenes from the canopy is modelled to be higher in period B, which could
mean that we have an underestimation in the model of monoterpenes going out of the
canopy. However, a decrease in temperature could also decrease the boundary layer
height, which will cause an increase in OH-reactivity. The vertical potential temperature20

is presented in Fig. 2. The boundary layer during day is found between ∼500–1400 m,
and during night between ∼100–300 m, with an exception of the night between the 17th
and the 18th, where the boundary layer drops significantly together with a sharp drop
in temperature. As also mentioned in the detailed paper on the measurements from
the BFORM campaign, the missing OH reactivity fraction was highest on this particular25

night and not during the mentioned pollution event on 27 August (Sinha et al., 2010).

9141

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/9133/2011/acpd-11-9133-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/9133/2011/acpd-11-9133-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 9133–9163, 2011

Modelling atmos.
OH-reactivity in

boreal forest
ecosystem

D. Mogensen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.1 Contributions to the OH-reactivity

The modelled OH-reactivity depends on the chemical contributions. In Fig. 3, calcu-
lated contributions to the OH-reactivity from the 13 to 27 August 2008 are visualized.
12 compounds are included in “Inorganics”; CO, O3, H2, H2O2, HO2, NO, NO2, NO3,
HO2NO2, HONO, HNO3, and SO2, 10 compounds are included in “Monoterpenes”;5

α-pinene, β-pinene, ∆3-carene, limonene, sabinene, camphene, ocimene, myrcene,
cineole and “other monoterpenes”, while 415 compounds are included in “Other or-
ganics”, with the label referring to include other organics than monoterpenes, isoprene
and methane. According to our simulations the largest OH sink in August is organic
compounds, which makes up ∼ 60% of the total calculated OH-reactivity. The most10

important contributing VOCs here are monoterpenes (∼ 0.6s−1), isoprene (∼ 0.2s−1),
and methane (∼ 0.2 s−1). The inorganic contribution is also very significant with an
OH-reactivity of ∼ 1.0s−1, with CO contributing with about 65% of the total inorganic
contribution to the OH-reactivity. The sum of the contributions from the inorganic com-
pounds and methane makes up 18% of the measured OH-reactivity, which is consistent15

with the findings by Sinha et al. (2010).
In Fig. 4, measured and modelled OH-reactivities including contributions to the mod-

elled OH-reactivity for Period A are presented as hourly averaged data. For the mea-
sured reactivity, 10 min resolution data has been used. Error bars of 20% on the
measured data have been determined by Sinha et al. (2010). For the SOSA model20

there are too many parameters included in order for us to give a good uncertainty
estimate, and therefore no error bars have been included on the modelled data. How-
ever, later on we perform a small sensitivity study on the rate coefficients included (see
Sect. 4.4). Sinha et al. (2010) also calculated the contribution from monoterpenes to
the OH-reactivity. However, while we find the contribution to be of 0.6 s−1, Sinha et25

al. (2010) find it to be of 1.0 s−1. This is due to the differences in calculation; Sinha
et al. (2010) calculates the contribution using PTR-MS mass signals and a weighted
average of the rate coefficients for the different monoterpenes, while we specifically
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model the individual monoterpene concentrations and there respective contributions
to the OH-reactivity. Due to large differences in rate constants, it is easy to get very
different contributions from monoterpenes if a wrong monoterpene is assumed to dom-
inate. Model simulations found that the order of OH-reactivity contributions from the
individual monoterpenes is as follows: ∆3-carene ∼ α-pinene > β-pinene > camphene5

∼ “other monoterpenes” > cineole ∼ sabinene > limonene >> ocimene ∼ myrcene.

4.2 Seasonal variation

In Fig. 5, modelled contributions to the OH-reactivity throughout the year 2008 are
shown. During the winter months the OH-reactivity sink is dominated by inorganic
compounds, whereas during summer, where the OH-reactivity and VOC emissions10

peak, the overall sink is dominated by organic compounds. Throughout the year, CO is
the most contributing inorganic species, closely followed by NO2. Since CO is the most
contributing inorganic species throughout the year, the inorganic OH-reactivity pattern
follows the CO concentration seasonal pattern, with higher levels in winter and spring
and lower in summer.15

The largest difference in monthly OH-reactivity is found between the months of March
(lowest) and July (highest), with the difference being ∼ 1.3 s−1. Due to a still high
missing fraction of unknown organic molecules in our model, we would expect that the
missing OH-reactivity would be greatest in summer when the temperature is higher and
the emissions larger (Goldstein and Galbally, 2007). According to our model, the OH-20

reactivity was expected to increase significantly from April 2008 to May 2008, and then
decrease in June 2008. This is mainly due to much lower temperatures and boundary
layer in May 2008, and to low contributions from isoprene in June. Comparisons of
measured and modelled isoprene concentration for 2008 indicate that the model un-
derestimates the isoprene concentration in June. Previous studies have shown that25

Scot pine forests, such as the Hyytiälä site, have a low isoprene emission (Rinne et
al., 2009). However, in the area contributing to the measured concentrations, isoprene
emitting tree species, such as Norway spruce, European aspen and willows are more
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common (Haapanala et al., 2007; Rinne et al., 2009). As most of isoprene is not emit-
ted at the site, but advected from near-by areas, it is difficult to describe this with a
column model. Therefore it is not reasonable to force our model to fit the measured
isoprene concentrations.

4.3 Vertical profile of the OH-reactivity5

Diel average modelled OH-reactivity from ground to approximately 10 m above the
canopy is visualized in Fig. 6. This includes data averaged from the 13th to end of
26 August 2008. Vertical profile of OH-reactivity for all summer months is presented in
Fig. 7. In both figures, we observe a night time peak in the OH-reactivity. This peak is
more pronounced below the canopy, but weakly observable also above. This is in con-10

trast with the measured OH reactivity in which no discernible diurnal cycle can be seen
(Sinha et al., 2010). Figure 8 presents daily averaged modelled and measured sum of
monoterpene concentration for 4, 14, and 22 m for the 26 July to the 10 August 2008.
This show a night time peak in monoterpene concentration corresponding to that in the
OH-reactivity. These peaks are probably found near ground due to night deposition,15

and continuing emission while the vertical mixing is suppressed, especially near the
ground. During day when the atmosphere is better mixed, the OH-reactivity decreases.
The measured vertical profile of monoterpene concentration also support these obser-
vations (Fig. 8). As also seen from Fig. 8, only a marginal difference between measured
and modelled concentrations for all three heights are observed verifying the emission20

scheme and chemistry included in our model. The reason for the lack of diurnal cy-
cle in the observed OH-reactivity may lie in the contrasting diurnal cycles of isoprene
and monoterpenes. While monoterpene concentrations at sites dominated by conifers
tend to have their maximum at night due to the emission from storage pools, the maxi-
mum of isoprene concentration is usually observed in the afternoon (e.g. Rinne et al.,25

2005). The vegetation at the immediate vicinity of the measurement site is dominated
by Scots pine emitting monoterpenes, but very little isoprene (e.g. Rinne et al., 2007,
2009). However, in the concentration footprint of the measurement site Norway spruce
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dominated forests are as abundant as Scots pine dominated ones (Haapanala et al.,
2007). Norway spruce is a significant isoprene source into the atmosphere, as are also
some other trees, such as European aspen and willows, present within the concentra-
tion footprint area (Tarvainen et al., 2007; Rinne et al., 2009). As the emission scheme
of the model describes Scots pine forest the modelled isoprene concentration is likely5

to be too low, thus not re-creating the observed diurnal cycle of the OH-reactivity. (e.g.
see Fig. 4 in Sect. 4.1, where the difference in measured and modelled OH-reactivity
in the afternoon could be assigned to this underestimation of isoprene concentration).

The OH-reactivity has also been modelled for higher altitudes, and as expected we
find that the OH-reactivity decreases with height and is less than 1s−1 at 3000 m.10

In Fig. 9 daily average modelled OH-reactivity in the canopy, during winter, is pre-
sented. The turbulence and mixing are slower during winter, which results in accu-
mulation of reactive compounds in the canopy that creates a peak in the OH-reactivity
starting from noon, contrary to the summer time. Also here, the highest OH-reactivity
is found near ground.15

Daily averaged accumulated OH-reactivity for Period A is shown in Fig. 10. The
OH-reactivity has been accumulated by summing over the OH-reactivity and height
(h) products (ΣROH,l ·hl ) for every layer (l ) until the boundary layer. The accumulated
OH-reactivity correlates with emission patterns of VOCs and peaks in the middle of the
day. Even though the OH-reactivity peaks near ground during night, the total boundary20

layer OH-reactivity peaks during day.

4.4 What is the missing OH-reactivity

As has been proposed by other investigators and in the study by Sinha et al. (2010),
a number of reactive unmeasured VOCs are likely to be responsible for the missing
OH-reactivity. We suggest that these unmeasured VOCs are of biogenic origin, since25

the site is remote from anthropogenic sources.
Unfortunately, there are large uncertainties on rate constants in general, which is a

particularly large problem during this study, since it is from these that the OH-reactivity
9145
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is calculated. Often when evaluators come to compare data for the same reaction stud-
ied by more than one group of investigators and involving different techniques, the rate
coefficient often differ by a factor of 2 or even more (Atkinson et al., 1992). However, for
many reactions between OH and VOCs, no experimental data exist, and the rate coef-
ficients are only estimates, increasing the uncertainty even further. We have performed5

a simple sensitivity study, where the rate constants for reactions between OH and the
9 monoterpenes included in the model, isoprene, methane, acetaldehyde, acetone,
formaldehyde, methanol and 2-methyl-3-buten-2-ol have been varied. By multiplying
all these rate constants by a factor of 2, we were able to increase the modelled OH-
reactivity by 40%. By multiplying the rate constants by a factor of 0.5, we lowered the10

OH-reactivity by 24%. The large uncertainties on the rate constants are therefore one
possible explanation for the missing OH-reactivity. However, the real errors in the rate
constants may well in practice have a cancelling effect.

4.5 Consequences for secondary aerosol formation

The still missing OH-reactivity affects our understanding of photochemical reactions15

and secondary product formation in the atmosphere. If unknown secondary products
are assumed to account for unidentified missing sinks, they tend to suppress formation
of secondary aerosols and enhance formation of ozone (Kiendler-Scharr et al., 2009).
However, in case unidentified primary emitted organic compounds are assumed to
account for the missing sinks, a variety of impacts may be observed, which could serve20

as precursors of secondary organics aerosols and significantly increase SOA formation
(Chatani et al., 2009).

On the 23 August, the only new particle formation event during the measured pe-
riod was observed. The missing OH-reactivity increased until the end of the event,
and then decreased shortly after. On the 14 and 24 August less well defined events25

were observed; the 14th formation of < 10nm particles were seen, and the 24th two
weak events were observed. A clear rise in the missing OH-reactivity on 14 August
and during the first weak event the 24 August were equally observed. However, the
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pattern was not repeated during the last event on the 24th. Due to the generally high
fluctuation in the measured OH-reactivity and lack of new particle formation events, we
are not able to make any clear conclusions. However, the observed rise in missing
OH-reactivity during an event could be explained by more reaction between OH and
some of these unknown organics. Since the rise is seen already in the early states of5

the particle events, it could be suggested that the OH oxidized compounds participate
in the nucleation or condense on the newly formed clusters and help them grow. How-
ever, we saw no correlation between missing OH-reactivity and the condensation sink
(correlation coefficient, R2, of 0.06), nor between measured OH-reactivity and conden-
sation sink (correlation coefficient, R2, of 0.09). It therefore seems unlikely that OH loss10

to surface of particles will have any significant contribution to the missing OH-reactivity.

5 Conclusions

We have modelled the total OH-reactivity over a boreal forest. We found that we are
currently able to simulate only ∼30–50 % of the total measured OH sink term. The
model simulations show that the relative contribution of inorganic and organic sinks15

vary significantly with season, with the organic compounds being the largest sink dur-
ing summer, and inorganic compounds dominating during winter. Of the organic com-
pounds, monoterpenes were found to be a major sink for the modelled OH-reactivity.
We also showed that the OH-reactivity decreased with height and that a peak is found
near ground during night correlating with monoterpene concentration. We suggest20

that the missing reactivity can be a combination of unmeasured biogenic species and
uncertainties in the OH rate coefficients.
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Table 1. Modelled, measured and missing OH-reactivity for 13 to 27 August 2008.

13–27 Aug 13–18 Aug 19–27 Aug
(s−1) (s−1) (s−1)

Modelled OH-reactivity 2.5 2.3 2.6
Measured OH-reactivity 6.5 8.6 5.1
Missing OH-reactivity 4.0/61% 6.2/73% 2.5/49%
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Fig. 1. Modelled (blue) and 30 minute resolution measured OH-reactivity (black) from the 13th to the
27th of August, 2008.
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Fig. 1. Modelled (blue) and 30 min resolution measured OH-reactivity (black) from the 13 to 27
August 2008.
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Fig. 4. Measured (black) and modelled (dark blue) OH-reactivity including contributions from inor-
ganic compounds (red), isoprene (light blue), monoterpenes (green), methane (brown) and other organic
compounds (purple).
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Fig. 3. Calculated contributions to the OH-reactivity from the 13 to 27 August 2008.
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Fig. 4. Measured (black) and modelled (dark blue) OH-reactivity including contributions from
inorganic compounds (red), isoprene (light blue), monoterpenes (green), methane (yellow) and
other organic compounds (pink).
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Fig. 5. Modelled OH-reactivity for year 2008 including contributions from inorganic compounds (dark
blue), isoprene (light blue), methane (lime), monoterpenes (orange) and other VOCs (red).
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Fig. 6. Daily averaged modelled OH-reactivity from the 13th to the 27th of August, as a function of
altitude.
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Fig. 5. Modelled OH-reactivity for year 2008 including contributions from inorganic com-
pounds (dark blue), isoprene (light blue), methane (lime), monoterpenes (orange) and other
VOCs (red).
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Fig. 5. Modelled OH-reactivity for year 2008 including contributions from inorganic compounds (dark
blue), isoprene (light blue), methane (lime), monoterpenes (orange) and other VOCs (red).
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Fig. 6. Daily averaged modelled OH-reactivity from the 13th to the 27th of August, as a function of
altitude.
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Fig. 6. Daily averaged modelled OH-reactivity from 13 to 27 August as a function of altitude.
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Fig. 7. Daily averaged modelled OH-reactivity as a function of altitude for May, June, July, and August.
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Fig. 8. Daily averaged modelled and measured sum of monoterpene concentration for 4, 14, and 22 m.
The averaging has been done for the 26th of July to the 10th of August, 2008.
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Fig. 7. Daily averaged modelled OH-reactivity as a function of altitude for May, June, July,
and August 2008.
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Fig. 7. Daily averaged modelled OH-reactivity as a function of altitude for May, June, July, and August.
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Fig. 8. Daily averaged modelled and measured sum of monoterpene concentration for 4, 14,
and 22 m. The averaging has been done for 26 July to 10 August 2008.
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Fig. 9. Daily averaged modelled OH-reactivity as a function of altitude for November, December, Jan-
uary, February, and March.
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Fig. 10. Daily averaged accumulated OH-reactivity until the height of the boundary layer for the 13th to
the 27th of August, 2008.
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Fig. 9. Daily averaged modelled OH-reactivity as a function of altitude for November, Decem-
ber, January, February, and March 2008.
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Fig. 10. Daily averaged accumulated OH-reactivity until the height of the boundary layer for the
13 to 27 August 2008.
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